

Álgebra Moderna II

Intersemestral 2020-4

Tema: Campos y extensiones

Agosto 2020

Ejemplo: Demostrar que $\sqrt{2} + \sqrt{3} + \sqrt{5}$ es algebraico sobre \mathbb{Q} y calcular su polinomio mínimo sobre \mathbb{Q} .

Paso 1: Encontrar un polinomio adecuado. Como ya habíamos mencionado, el truco es escribir

$$\xi = \sqrt{2} + \sqrt{3} + \sqrt{5}.$$

Después considerar a las potencias pares, pues estas serán combinaciones enteras de 1, $\sqrt{6}$, $\sqrt{10}$ y $\sqrt{15}$.

$$\xi^{2} = 10 + 2\sqrt{6} + 2\sqrt{10} + 2\sqrt{15}$$

$$\xi^{4} = 224 + 80\sqrt{6} + 64\sqrt{10} + 56\sqrt{15}$$

$$\xi^{6} = 6160 + 2448\sqrt{6} + 1904\sqrt{10} + 1584\sqrt{15}$$

$$\xi^{8} = 176576 + 71680\sqrt{6} + 55552\sqrt{10} + 45568\sqrt{15}$$

El objetivo es ver si es posible encontrar racionales r_2, r_4, r_6 y r_4 tales que $r_2\xi^2 + r_4\xi^4 + r_6\xi^6 + r_8\xi^8 \in \mathbb{Q}$. Si conseguiremos esto, conseguiremos los coeficientes de un polinomio en $\mathbb{Q}[x]$. La razón por la que consideramos justamente las primeras cuatro potencias pares es porque estas forman una colección de cuatro elementos distintos de un espacio \mathbb{Q} -vectorial de dimensión cuatro con base $\{1, \sqrt{6}, \sqrt{10}, \sqrt{15}\}$. De esta manera, si cierta matriz es invertible, entonces ganamos.

Considere la siguiente tabla

	ξ^2	ξ^4	ξ^6	ξ^8
1	10	224	6160	176576
$\sqrt{6}$	2	80	2448	71680
$\sqrt{10}$	2	64	1904	$55\ 552$
$\sqrt{15}$	2	56	1584	45 568

Esta nos dice con los coeficientes racionales de cada elemento ξ^j en términos de la base $\{1, \sqrt{6}, \sqrt{10}, \sqrt{15}\}$. Consideramos entonces a la matriz $A \in \operatorname{Mat}_4(\mathbb{Q})$, dada por

$$A = \begin{pmatrix} 10 & 224 & 6160 & 176576 \\ 2 & 80 & 2448 & 71680 \\ 2 & 64 & 1904 & 55552 \\ 2 & 56 & 1584 & 45568 \end{pmatrix}$$

Esta matriz es invertible en $\operatorname{Mat}_4(\mathbb{Q})$, pues $\det(A) = 884736 \in \mathcal{U}(\mathbb{Q})$. Luego entonces, para c = (1, 0, 0, 0) existe una solución única $b \in \mathbb{Q}^4$ al sistema

$$A \cdot X = c$$

Tal solución es $b = (\frac{960}{576}, \frac{-352}{576}, \frac{40}{576}, \frac{-1}{576}).$

Como ya mencionamos, esto significa que

$$\frac{960}{576}\xi^2 + \frac{-352}{576}\xi^4 + \frac{40}{576}\xi^6 + \frac{-1}{576}\xi^8 = 1$$

Esto demuestra que $\sqrt{2} + \sqrt{3} + \sqrt{5}$ es una raíz del polinomio $q = x^8 - 40x^6 + 352x^4 - 960x^2 + 576$, el cual es, claramente un polinomio con coeficientes racionales.

La conclusión de este análisis es que $\sqrt{2}+\sqrt{3}+\sqrt{5}$ es algebraico sobre $\mathbb Q.$

Paso 2: Investigar si es mínimo. En principio, no podemos tomar una decisión inmediata sobre la irreducibilidad de q sobre \mathbb{Q} . Una manera de proceder en estos caos es calcular el grado de

la extensión $\mathbb{Q}(\sqrt{2} + \sqrt{3} + \sqrt{5})$ sobre \mathbb{Q} .

Primero notemos que el hecho de que la matriz A sea invertible también nos permite deducir que $\sqrt{6}$, $\sqrt{10}$, $\sqrt{15} \in \mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5})$. Para verlo sólo hay que resolver el sistema

$$A \cdot X = d$$

para $d \in \{(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$. Esto nos dará las coordenadas de los elementos $\sqrt{6}$, $\sqrt{10}$ y $\sqrt{15}$ en términos del subconjunto \mathbb{Q} -linealmente independiente $\{\xi^2, \xi^4, \xi^6, \xi^8\}$ de nuestro campo $\mathbb{Q}(\sqrt{2} + \sqrt{3} + \sqrt{5})$.

Luego, notemos que $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3} + \sqrt{5})$. Esto se debe a que

$$\sqrt{2} + \sqrt{3} = \left[\frac{1}{\sqrt{10}} + \frac{1}{\sqrt{15}} \right] 5\sqrt{6}$$

y a que todos los factores del lado derecho de esta expresión son elementos de $\mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5})$. Entonces, el hecho de que $\sqrt{2}+\sqrt{3}$ sea un elemento de $\mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5})$ implica que

$$\mathbb{Q}(\sqrt{2}+\sqrt{3})\subseteq\mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5}).$$

Entonces, usando la formula del grado de una extensión con un campo intermedio obtenemos que $[\mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5}):\mathbb{Q}]$ es exactamente $[\mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5}):\mathbb{Q}]$ $\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]$. Sin embargo, $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=4$ y $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}(\sqrt{2}+\sqrt{3})]=2$.

La conclusión es que $[\mathbb{Q}(\sqrt{2} + \sqrt{3} + \sqrt{5}) : \mathbb{Q}] = 8$. Este hecho también nos dice que el polinomio q es polinomio mínimo de $\sqrt{2} + \sqrt{3} + \sqrt{5}$ sobre \mathbb{Q} .